

US008455048B1

(12) United States Patent

Fan et al.

(10) Patent No.:

US 8,455,048 B1

(45) **Date of Patent:**

Jun. 4, 2013

(54) METHOD FOR MAKING NANOMATERIALS

(75) Inventors: **Hongyou Fan**, Albuquerque, NM (US); **Huimeng Wu**, Albuquerque, NM (US)

(73) Assignee: Sandia Corporation, Albuquerque, NM

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 322 days.

Appl. No.: 12/880,886

(22) Filed: Sep. 13, 2010

Related U.S. Application Data

- (60) Provisional application No. 61/315,270, filed on Mar. 18, 2010.
- (51) **Int. Cl. B05D 3/12** (2006.01)
- (52) **U.S. CI.**USPC **427/241**; 427/240; 427/369

(56) References Cited

U.S. PATENT DOCUMENTS

8,092,595	B1 *	1/2012	Fan et al	117/70
2008/0096293	A1*	4/2008	Suhir et al	438/14

OTHER PUBLICATIONS

Dong et al., "Pressure-induced morphology-dependent phase transformations of nanostructured tin dioxide," Chemical Physics Letters, 480, Aug. 2009, pp. 90-95.*

H. Wu, et al., Nanostructured Gold Architectures Formed through High Pressure-Driven Sintering of Spherical Nanoparticle Arrays, J Am Chem Soc. 2010. DOI: 10.1021/ja105255d.

H. Wu, et al., Pressure-Driven Assembly of Spherical Nanoparticles and Formation of 1D Nanostructure Arrays, Angew. Chem., 122, Int.Ed.2010. DOI:10.1002/ange.2010011581.

Wu, et al., Pressure-Driven Assembly of Spherical Nanoparticles and Formation of 1D Nanostructure Arrays, ACS Meeting Aug. 2010, Boston, MA.

* cited by examiner

Primary Examiner — Kirsten Jolley (74) Attorney, Agent, or Firm — Kevin W. Bieg; Elmer A. Klauetter

(57) ABSTRACT

A method of making a nanostructure by preparing a face centered cubic-ordered metal nanoparticle film from metal nanoparticles, such as gold and silver nanoparticles, exerting a hydrostatic pressure upon the film at pressures of several gigapascals, followed by applying a non-hydrostatic stress perpendicularly at a pressure greater than approximately 10 GPA to form an array of nanowires with individual nanowires having a relatively uniform length, average diameter and density.

13 Claims, 8 Drawing Sheets

